

Ocean Color Experiment Ver. 3 (OCE3)

Concept PresentationsContamination

June 18, 2011

The IDL Team shall not distribute this material without permission from Betsy Edwards (Betsy.Edwards@nasa.gov)

Areas of Concern Main Optics

Integrated Design Capability / Instrument Design Laboratory

Instrument Body

- Large number of optic surfaces
 - 51 passes through surface contamination
 - All but nine handle UVA at 350 nm
 - Many handle inferred to 2400 nm
 - One at very long angle
 - At least one in a focal plane
 - One surface chilled to -20 C
- Readings reach into UVA at 350 nm
 - Sensitive to hydrocarbon (Next slide)
- Compact multi-sensor design limits inter baffling

OCS3 Wavelength Sensitivity

Integrated Design Capability / Instrument Design Laboratory

Line: 50 ang Molecular Contamination

Areas of Concern Telescope Tube

Integrated Design Capability / Instrument Design Laboratory

Telescope Tube

- Interior tube coatings probably uncleanable
 - Limited access, flat black with complex surface
 - Large particles will remain into space and then can migrate
- Telescope Launch Venting
 - Exhaust directed at rotating mirror at very flat angle
 - Could be a problem for large particles sticking
 - Fortunately, not on a focal plane
- Rotating Telescope Tube
 - Up to 7 g simulated gravity out to ends of tube
 - Large particles may move
 - Stick to interior optical surface or mirror
 - Cut throughput
 - Fortunately, not on a focal plane

Areas of Concern Calibration

Integrated Design Capability / Instrument Design Laboratory

Cal System

- OCE2 version problematic
 - Mounts on cradle
 - · Light leaks a major concern
- OCE3 New Notional Design considered
 - Expand size to over to fill field of view in one dimension only
 - Move to the scanner housing to address light leak concern
 - Glare control is TBD
 - Could require additional mass

Recommendations

Integrated Design Capability / Instrument Design Laboratory

Construction in 10K cleanrooms required

- Standard practice for this type of instrument
 - Also use 100 clean benches for Optics Subcomponents
- Protect against molecular contamination
 - Hydrocarbons, silicones
 - Effect UVA and diffuser plates adversely
- Protect against large particles
 - These block throughput and increase stray light
 - Redistribution likely after launch

Purge System Needed

- Mass for parts flown estimate 2.0 kg
- Machined components for labyrinth vent traps needed

Computer analyses Recommended

- Similar to thermal analysis featuring View Factors
 - Calculate migration paths for molecules
 - Evaluate venting design
- Instrument has an unusual large particle considerations

